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The problem of the interaction of a rigid massive strip punch with a layered semi-bounded medium is 

considered. Contact is made without friction, the lower plane of the layered base is rigidly clamped and the 

punch is under the action of a vertical force which varies with time in a specified way. An efficient method is 

proposed for solving problems of this class, based on a combination of the method of fictitious absorption, a 

special approximation of the kernel of the integral equation and numerical inversion of a Laplace 

transformation. The problem is investigated in detail in the case of a visco-elastic packet made out of two 

layers for different forms of load with different ratios of the elastic and geometric parameters. Remarks are 

made regarding the use of a simplified solution of the problem. 

1. FORMULATION OF THE PROBLEM 

LET us consider the problem of the interaction of a rigid strip punch of mass M and width 2a with a 
semibounded layered medium. We shall assume that contact is made without friction and that a 
vertical force acts on the punch which varies with time t in accordance with a specified law P(t). 

We shall make use of the differential equation of motion of a solid in dimensionless form 

where W(T) is the displacement of the punch, 4(x, 7) are the contact stresses which arise in the 
contact region and Q(T) is the reaction of the base. We will henceforth omit the prime on 
dimensionless quantities. 

The function q(x, 7) is determined by solving the dynamic Lam4 equations for the medium: 

(hi+Zpi) qrad div ai- pi rot rot iij’=p#@/&$ 

with boundary conditions of mixed type and initial conditions. Here u’(U1, U2) is the vector of the 
displacements of points of the medium (U, is the horizontal component and U, is the vertical 
component), Xi and pi are Lam6 parameters, pi is the density of the layers and i is the number of the 
layer. 

In particular, in the case of the unsteady action of a punch on an elastic layered medium consisting 
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of N layers with a rigidly clamped lower face (Odzdh, + . . . + AN, --oo <xc 0~ where hi is the 
thickness of the ith layer), the boundary conditions have the form: the conditions at the surface of 
the layered medium at z = 0 

T,*‘(5, 0, r)=O, ]s]-+= 

u*z’(2, 0, r)=O, Is]>!; Uz’(x, 0, r)=W(r), Is]<! 

the condition of rigid clamping at z = h, + . . . + hN = H 

U,N (z, H, 7) =Uzn (5, H, T) =0 

theconditionofthejoiningofthelayersatz=h,+...+hj(i=l,2,...,N-l) 

u,’ z l-J’:‘, I_J,’ : lJ:i, rfz = &i::, cr:zi ;= of:’ 

The system is at rest at the initial instant of time. 

2. FUNDAMENTAL EOUATIONS 

Let us apply a Laplace transformation with respect to time T and a Fourier transformation with 

respect to the coordinate X. The above-mentioned problem reduces to a system of differential and 

integral equations: 

(24 

k (x) = (2n)-1 5 K (cc, pe-+l2) e-Lax da 

p is the parameter of the Laplace transforA;ion and y is the parameter of the viscosity of the 
medium (the coefficient of the losses in internal friction in the base material). Here, according to 
[l], the elastic constants in the Lame equations are complex quantities of the form h,e’?, pjeiY, 
Odydl. 

We note that the integrand K((Y, p) is determined by the type of medium and, in the case of 

layered media, has the same form as in the corresponding problems on the steady-state oscillations 
when the dimensionless frequency of the vibrations w is replaced by ip (i is the square root of - 1). 

In this case, the function K(a, p) has the asymptotic behaviour K((Y, p) = c 1 a 1-l when (Y+ ~0. The 
properties of the function K(a, p) are described in [2]. 

3. CONSTRUCTION OF THE SOLUTION 

Let qo(x, p) be the solution of the integral equation (2.2) with unit right-hand side (Kq,, = 1). 

Then, q*(x, p) = W* (p)qo(x, p). The solution qo(x, p) was constructed using the fictitious absorp- 
tion method [3] which enables one analytically to separate out the singularity of the contact 
pressures on the boundary of the punch. Here, the Fourier integral of q(,(x,p) is taken in 
quadratures. The form of the functions qo(x,p) is known [4] for fixed values of o (w = &). 

It is obvious that the reaction of the base Q*(p) is associated with the Fourier transformation 
Q(,(a, p) of the solution qo(x, p) by the relationship 

Q*(P)=W*(P)Qo*(O, P)=W*(P)Qo(P) (3.1) 

The function QO(p), constructed by the fictitious absorption method, has a quite simple form (B 
is the approximation parameter, B %=- 1) 
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Q. (p) = K-’ (09 p) { 2aBB+ i - B-” $+ Ci, (p) [F (0, qJ + F (0, - +)I} (3.2) 
r& 

The coefficients Ck (p) are determined from the system of equations 
A 

z 
l G (p) [fr (a, +J + fr (a, - ~)l -2: 2 if2 (4 + fz (--)I 

k-1 

a=z,, 1=1, 2, . . . n 

fita, xk ) = (B+ia)“xe’“F(a, xk) + (B--ia)‘“e-‘“F( -a, -x~) 

fi(a)=(ia)-r'ia(B+ia)l'lB" erf[2(B+ia)]‘“J 

(3.3) 

F (a, xk) 5= 2 Res W (p,, p) eir’~(‘-‘~’ (B - ipi)-% (p, + a)-’ 

1=1 

H(a, p) =c-lK(a, p) (a*+B*)‘lr (3.4) 

where xk are points which divide the interval (0, a) into n equal parts, pj and zk are the poles and 
zeros of the function H(a,p) located in the upper half-plane a. 

After substituting expressions (3.1) and (3.2) into (2. l), we get 

w* (PI =p* (PI (MPZ+Qo (p) ) --L 
In order to obtain the final solution, it is necessary to carry out the inverse Laplace transformation 

e-tp 

W(z) = & \ W* (p) eLT dp 

.V-iW 

It follows from the physical conditions of the problem that the integrand does not have roots in 
the right-hand half-plane Rep>0 and an integral along a line parallel to the imaginary axis can be 
replaced by an integral along the imaginary axis and, then, on making the substitution p = io, the 
integral of the Laplace inversion reduces to the Fourier integral 

w(t) =PS~~~*(io)cosordo=--~~lmW*(io)sinordo (3.5) 
0 0 

In order to calculate the reaction of the base Q(p) and the normal stresses in the contact region 
q(x, T), it is necessary to replace the integrand W*(p) by W*(p)Q*(p) and W*(p)qo*(x,p), 
respectively. 

Filon’s method is used below to evaluate integrals of the type (3.5). The advantage of this method 
over other methods lies in the rapid assurance of a high accuracy in evaluating integrals of oscillating 
functions. 

4. SPECIAL APPROXIMATION OF THE KERNEL 

According to the method of fictitious absorption, the representation 

H (a, p) = ii (a* - zkZ (p)) (a2 - Pka (PV (4.1) 
k=l 

is used to construct the solution of problem (3.2), (3.3). 
For this purpose, we make the substitution l= a*/(a*+A’) in expression (3.4) which translates 

the interval [0, CQ] into [0, 11, where A is an approximation parameter. According to the Weierstrass 
theorem, the function H(A [t/(1 -t)]“‘,p) can be uniformly approximated by an nth degree 
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polynomial. In the preceding papers [3, 41, the function H(a,p) was approximated in the case of 
harmonic oscillations for the actual frequency values of Bernstein polynomials 

which preserve the behaviour of the function K(a,p) at infinity and at zero. By increasing the 
degree of a Bernstein polynomial, it is possible to obtain any order of accuracy. 

The function H(c~,p) can have a significant growth in amplitude in the region of low values of (Y 
and tends monotonically to unity at large (Y. At the same time, Bernstein polynomials have 
coefficients which depend on the function being approximated, which is represented by IE + 1 points 
in a uniform mesh in [0, 11. By converting the subdivision mesh [0, l] into [0, ~1, it can be shown 
that these points do not take account of the pronounced growth in the amplitude of the function 
H(a,p) in a certain interval [0, c-u,]. In this case, a Bernstein polynomial may result in an 
appreciable error. It is possible to get rid of this by increasing the degree of the polynomial and 
selecting an arbitrary parameter A. This leads to an increase in the roots of the function in 
representation (4.1) which, in its turn, substantially increases the time required for the calculation in 
solving the system of equations (3.3) for determining Ck . 

The following procedure is proposed in this paper. The function H(a,p) is approximated by a 
polynomial of the form (4.2) with the arbitrary coefficients 

R 
n 

zz c bnk (1 _ qn-k tk 

k=O 

We determine the coefficients bnk by minimizing the functional 

J= 

n1 

1 l, (Rn (ti) - H (tit P))* 

It means that the following conditions have to be satisfied: 

aJlab,,=o, k=O, 1, 2, . . . n 

where t, is a non-uniform subdivision of the interval [0, l] into m points in such a manner that the 
complex form of the behaviour of the function H is taken into account. Finally, we get an (n + 1)th 
order system of linear algebraic equations in bnk . 

Such an approach enables one to achieve greater accuracy due to the increase in the number of 
points of subdivision m, without changing the degree of the approximating polynomial R, 

5. NUMERICAL ANALYSIS 

The numerical analysis was carried out for a strip punch which makes frictionless contact with a packet 
consisting of two layers and rigidly coupled to a non-deformable base. 

The behaviour of the system was investigated as a function of the viscosity of the medium, the mass of the 
punch and the geometric and elastic parameters of the system. The thicknesses of the layers, their strength and 
density were varied. The effect of the type of load on the displacement of the punch was investigated. 

We note that, in the case of layered semibounded media, there exists a critical dimensionless frequency for 
the triggering of a waveguide w, starting from which non-decaying oscillations propagate in the system which 
carry away energy to infinity. Here, o* # 0 in the case of a medium which is rigidly coupled to a non-deformable 
base. 

In the case of a packet consisting of two layers, o* is the smallest root of the transcendental equation 

(CR)“? tg(lr,wer”l)tg(k,o(e2C/R)“~)-I=0 

er=(f-2vk)/(2-24, G=&c(z, R=pJpz 

where uk is Poisson’s ratio of the k-layer, k = 1,2. 
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FIG. I 

In the case of a layer which is adhering rigidly to a non-deformable base, w* = n/(2h). It can be shown that 
the thinner the waveguide and the wider the punch, the greater the value of w* and the greater the interval 
(0, we) where the function Q0 is real. 

We know [6] that, during harmonic oscillations of a system consisting of a massive punch and a waveguide, 
there is an isolated B-resonance in the interval (0, w*) starting from a certain value of the mass M>M* where 
the function V = [-Mo2+ &((iw)]-’ becomes infinite. 

On introducing a viscosity y into the waveguide medium, the singularity on the real axis disappears and there 
remains only a limited growth in the amplitude Vat a frequency close to the resonance frequency. An increase 
in the mass of the punch leads to a decrease in the value of wP and to an increase in the amplitude of the 
function V. 

All that has been described above has to be taken account of in the numerical implementation of the 
problem. 

The behaviour of the punch when the thickness of the packet is increased and the layers have identical elastic 
parameters (p,, = JL*, vi = v*, pi = p2) is of interest, that is, the case of a single layer. The thickness h was 
varied within the limits from 0.2 to 12 and the calculations were carried out both taking account of and ignoring 
the second term in formula (3.2). It was established that, for thicknesses less than the width of the punch 
(h < l), the effect of the second term in (3.2) on the displacement of the punch was insignificant. Consequentiy, 
the calculation can be carried out without taking account of the second term, which shortens the time required 
for the calculation considerably. The dependence W(T) for a load P(r) = re’14T, M = 1, $2 = 0.2 and for 
various values of h is shown in Fig. 1. The dashed lines correspond to calculations carried out without taking 
account of the second term in (3.2). 

It is necessary to take account of the second term starting from a punch thickness h 2 1. In these cases, 
quantitative changes in the behaviour of the punch initially appear and, subsequently, qualitative changes. 

When the thickness of the layer is increased, the maximum displacements of the punch and the period of its 
oscillations also increase. The latter is associated with an increase in the time of arrival of the wave which is 
reflected from the rigid base. In the case of layers of differing thickness, the displacements of massive punches 
will have the same values (for an equal load) up to the instant of arrival of the reflected wave in the thinner 
layer. It shouid be especially noted that, in the case of “thick” layers, the displacements of the punch may be 
calculated using a simpler model of the medium, that is, a simpler model of the half-space. 

The dependence W(T) when a punch of unit mass is loaded with a force 

P(r)=ff(z)-ff(r-O,f) 

is shown in Fig. 2. 
The dot-dash curve corresponds to the case of a half-space. 

(5.1) 

The effect of the elastic characteristics was investigated together with the study of the influence of the 
thickness of the packet of layers on the displacement of the punch. A packet consisting of a soft layer on a rigid 
layer and of a rigid layer on a soft layer was investigated. The calculation showed that, in the first case, the 
problem is close to the problem of a layer with the parameters of the soft layer which has already been 
considered. In the second case (of a rigid layer on a soft layer), the qualitative picture changes considerably. 
This is associated with the fact that the wave which is reflected from the boundary of the layers returns to the 
punch in phase giving rise to an increase in the displacements of the punch. This effect shows up more clearly 
the greater the thickness of the soft underlying layer. Figure 3 illustrates the behaviour of a punch of unit mass 
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on a packet consisting of two layers with the parameters: R = 1.09, G = 2.72 with a force 
P(T) = H(T)-I~(T-0.01). Curves l-4 correspond to the following pairs of values (h,, hz): (0.05,0.45), 
(0.2,0.3), (0.3,0.2), (0.45,0.05). 

A change in the decay parameter y in the medium has no effect on the period of oscillations of the punch 
when there is an appreciable difference in the amplitude characteristics. 

Increasing the mass of the punch leads to an increase in the period of the oscillations. In this case, the 
amplitude depends on the duration of the action of the load. The displacements of the punch when a = 5 on a 
layer of unit thickness (all lengths are referred to h) are shown in Fig. 4. The load P(T) = H(T-- 1). Figure 5 
illustrates the behaviour of punches of the same masses under the load (5.1). 

I wish to thank I. I. Vorovich for discussing this work and for valuable remarks. 
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